Natural Capital as an Economic Public Product: An Empirical Analysis of Illinois Counties

Adee Athiyaman¹

Research Brief, Short Paper ISSN 2687-8844 Vol. 1, No. 10 (2019 May 26)

This paper addresses the question, "how do Illinois counties rank in terms of investments in natural capital". A statistical modeling of county capability suggests that metro counties not only invest in natural capital, but also benefit from the investment by attracting more STEM-qualified employees / entrepreneurs to the county who engage in innovative, R&D activities.

Keywords: Ecological systems, county capability, discriminant analysis.

1.0. Introduction

The term capital implies the following attributes²: (i) the concept is an asset which may be owned privately (for instance, physical capital such as an automobile) or collectively (for example, material cultural capital such as religious places of worship); (ii) the concept helps persons (and communities) to enhance their wellbeing; (iii) the concept could deteriorate in quality and quantity over time, and (iv) the concept's stock can be built through investment (for example, financial investments on physical capital) which has an opportunity cost (Dalziel et al 2017). The natural environment meets these criteria (Helm, 2015): the eco system is being damaged by humans and these impacts can be mitigated through well-designed investments. Who owns this problem? It depends on the geographical context of the analysis; for climate change mitigation, it is the global community; for green spaces in a specific geographical region such as the county, it is the local government that has the responsibility to invest and (co)produce natural capital as an economic public product.

An economic public product is one of the two categories of products that we consume, private consumption products and economic public (collective) consumption products. Collective consumption is plagued by free-rider problems (Dawes and Thaler, 1988), citizens do not want to pay for these public goods and services. To illustrate, consider a community with a population of 40,000 adults. The community is in need of street lighting which would cost \$800,000, or \$20 per adult. However, since street lighting is a public benefit for everyone in the community³, it is unlikely to be funded by voluntary collaboration. One may think that her contribution of \$20 is not going to make much of

¹ Professor, Illinois Institute for Rural Affairs.

² Technically, it is the 'intension' part of the conceptual definition.

³ It is 'non-excludable', not possible to prevent others from enjoying the service.

an impact on the \$800,000 goal, but the extra \$20 in personal spending would bring in a much larger benefit. This makes collective consumption products less attractive for profit-oriented businesses and provides a rationale for the local governments to levy taxes, for example, to fund the production and delivery of collective consumption products (Samuelson, 1954).

At the county level, investments in natural capital has economic development consequences; entrepreneurs will search out innovation opportunities in a domain such as the "green" domain (cf. the 'smart specialization concept'⁴ in EU cohesion policy (OECD, 2012)). Finding ways to enhancing these entrepreneurial processes is crucial for identification and development of general purpose technologies⁵.

How do Illinois counties rank in terms of investments in natural capital, an economic public good? Which county is ready (prepared) for 'smart specialization' in R&D? This paper addresses these and other related questions.

2.0. County Government and Economic Public Goods

The premise of this section is that public sector offers opportunities to enhance wellbeing of residents, beyond what they could attain from voluntary associations and market exchanges. The limits of voluntary organizations in enhancing personal wellbeing is highlighted by Olson (1965) in the form of an empirical generalization: the larger the voluntary group, the less it will further members' common interests⁶. Market economy tends to supply only products where the externalities⁷ favor the firm. For negative externalities involving a large number of residents, government intervention is required.

Figure 1 shows counties' expenditure on natural capital for the 2017 fiscal year⁸. Only three counties report spending at least 5% of their total budget⁹ on natural capital.

⁴ Smart specialization is a concept for technological linkages between industrial sectors. Its origin lies with the European Union's Knowledge for Growth expert group (K4G, McCann and Ortega-Argiles, 2015). ⁵ Examples of general purpose technologies (GPT) include electricity and computer.

⁶ Personal reward is tied to a member's interest which is determined by the scope or number of activities the voluntary organization is engaged in; the larger the scope of activities, the lower the benefits for any member.

⁷ Externalities are positive / negative impacts experienced by persons not directly involved in the consumption of a product (Baumol, 1972). For example, CKC (IL) 336 would benefit travelers from Macomb, IL to Quincy, IL by reducing travel times, but may negatively impact businesses in the US136 Macomb → Tennessee route.

⁸ 2017 fiscal year for Illinois spans the July 1 2017 to June 30 2018 time period.

⁹ We use the term budget to describe total county expenditure.

Figure 1: Spending on Natural Capital as a Proportion of Total Expenditure

In all, 34 counties (33%) reported spending on natural capital. Appendix 1 ranks these counties in terms of proportion of total expenditure spent on ecological systems. As a measure of investment in natural capital, the rank orderings in Appendix 1 show that Lake, Knox, and Rock Island are leaders. Bond, Jo Davies, and Washington counties are laggards, they have the lowest investments in natural capital.

One logical explanation for little or no investments in natural capital is declining county revenues. Although the Pearson correlation between investments in natural capital and growth in revenues is p = 0.27, there is little statistical evidence that investments in natural capital is associated with growth in revenues (Figure 2¹⁰).

¹⁰ The 0.27 correlation suggests that revenue growth explains approximately 7% of the variance in county investments in natural capital.

Figure 2: Investments in Natural Capital and Revenue Growth during 2012-2017

Note: The z value of the correlational relationship is 1.54, $p \le 0.12$

An indepth analysis of county revenue data suggests that less than one-third of total revenue is from federal and state governments (Appendix 2). Furthermore, a path-dependence analysis of sources of revenues for the county governments reveals that 'local revenue' is the only source of revenue growth; other sources registered zero growth¹¹.

This push towards independent financial existence of counties provides a context for the following analysis on distinctive contributions county governments can make to wellbeing.

3.0. County Government and Capabilities

A growing area of research in regional science is smart specialization (OECD, 2013; Foray, 2015). The smart specialization concept suggests that geographical regions such as counties should be helped to identify areas of research and development strengths based on their existing capabilities. Multi-attribute utility models such as AHP can be used in this investigation, but their implementation requires personal surveys of stakeholders (Athiyaman, 2019a). If the task demands a smart-specialization

¹¹ Growth in revenues, source-wise, were analyzed for the 2012-2017 time period. The median growth rates were: local taxes 2%, state, federal, and other sources: 0%.

assessment for all the counties in the nation or for a state such as Illinois, then resource constraints (including time) may require a statistical analysis of published county-level data on indicators related to research and development. This is the approach taken in this paper, we assess the ease of innovative activities in the counties (EASE), examine the (industry) sectoral correlates of EASE, and highlight the socio-economic and demographic profiles of the high/low EASE counties.

3.1. Methodology

To assess the innovative potential (ease of engaging in innovative activities, EASE) of a county two indicators were used: number of science and engineering graduates in the county (STEM), and number of patents issued to the county's entrepreneurs and industry. The American Community Survey (ACS) data were used to compile countylevel STEM numbers¹². The patent data were obtained from the US Patent and Trademark Office¹³. The standard scores of these variables for the counties were computed¹⁴, summed and averaged, and the counties ranked¹⁵.

Based on the reasoning that larger the industry the higher will be the ease of innovative activities in the industry, Pearson correlations were computed between EASE and NAICS two-digit (industry) sectoral employment numbers¹⁶. The statistical significance of the correlations were assessed using a z test.¹⁷

Finally, a median split of the EASE scores was used to categorize counties into two groups, high and low innovative regions, and a battery of socio-economic and demographic variables were used to identify the 'structure' of the high EASE counties (for example, they all have higher per capita income)¹⁸.

4.0. **Results and Discussion**

Table 1 shows the EASE rankings of the top three counties and the three lowest ranking counties. Metro or non-metro classification seems to be a key factor that determines EASE group membership, metro counties have higher R&D readiness.

¹² Table B15012.

¹³ www.uspto.gov/web/offices/ac/ido/oeip/taf/countyall/usa county gd.htm

¹⁴ A standardized variable has parameters $\mu = 0$ and $\sigma^2 = 1$.

¹⁵ Patent data used were the most recent available, the 2015 numbers.

¹⁶ ACS Table DP3.

¹⁷ The test is based on the results of the computation: $z = \frac{\sqrt{n-3}}{2} \times ln \frac{(1+r)}{(1-r)}$ ¹⁸ The profile variables considered include: population, GDP, employment in NAICS 2-digit sectors, health, infrastructure and air quality indices (Athiyaman, 2019b).

County	Score (sum of z Scores)	Rank
Top Counties		
Cook County Lake County DuPage County	8.92 2.60 2.52	1 2 3
Low EASE Counties		
Alexander County Hardin County Pulaski County	-0.225 -0.224 -0.223	101 100 99

Table 1: EASE Rankings of Counties

Correlations between EASE scores and sectoral employment numbers imply, that compared to the other industrial sectors, the natural resources sector (NAICS 11: agriculture, forestry, fishing and hunting, and mining) has the lowest number of STEM-qualified employees and minimal number of patents¹⁹. Manufacturing exhibits the highest association with EASE. Information sector and professional, scientific, and management services are also benefitting from the innovative opportunities provided by the regions (Figure 3).

¹⁹ One reason for this could be the low wages in the sector (Athiyaman, 2019c), STEM specialists may find the sector unattractive for employment and R&D.

Figure 3: Variability in EASE Explained by Sectoral Employment Numbers

Note: R^2 is the metric plotted.

In exploring the phenomenon of EASE at Illinois counties, it is assumed that it is influenced by quality of life factors and real GDP. A linear discriminant of the form $Y = a_1x_1 + \dots + a_6x_6$ that will discriminate between the high and low EASE counties was calibrated²⁰. The parameters were chosen to maximize the ratio:

Variance between means on the discriminant axis variance within group on the discriminant axis

The calibrated discriminant function shows that infrastructure (Internet penetration) and air quality are the salient discriminator between high and low EASE counties. The discriminant function predicts the low/high classification with 78% accuracy (Table 2 and Figure 4).

Table 2: Structural Influences on EASE

Structural Determinants: Internet Penetration Air Quality Group Means: High EASE = 20.511 Low Ease = 11.934

²⁰ Quality of life factors and real GDP were assigned variable labels: x1 = life expectancy, x2 = physicians per 1000 population, x3 = internet penetration, x4 = air quality, x5 = population, and x6 = real GDP. See (Athiyaman, 2019b) for operational definitions of the variables.

Figure 4: High and Low EASE Counties: Distribution on Infrastructure and Air Quality Variables

Note: Circle represents low EASE counties

Here are the implications for county governments wanting to improve their standings on the EASE measure:

- (i) To attract more STEM qualified employees and to increase R&D in the county improve the county's infrastructure, specifically Internet connectivity;
- (ii) Invest in natural capital to enhance air quality, and
- (iii) Pay a living wage in natural resources sector to increase its innovative activities.

5.0. Conclusion

This paper is an attempt to show that investment in natural capital is required to enhance wellbeing. Empirical analysis shows that only 33% of Illinois counties invest in natural capital. Given that county revenue is contingent on the innovative capacity of the county, a linear discriminant analysis was conducted to identify structural dimensions of R&D intensive counties. The results point to the need for counties to invest in natural capital to attract STEM-qualified employees and entrepreneurs to engage in innovation.

References

Athiyaman, A. (2019a). *Economic Development Decision Making*. Primer, Macomb: IL: IIRA.

Athiyaman, A. (2019b). Sustainable Economic Development Indices (SEDI) for Illinois Counties. May 10, 2019. *Research Brief*, Macomb: IL: IIRA

Athiyaman, A. (2019c). Economic Capital of Illinois: An Empirical Analysis. May 23, 2019. *Research Brief*, Macomb: IL: IIRA

Baumol, W. J. (1972). On Taxation and the Control of Externalities. *American Economic Review* 62 (3): 307-322.

Dalziel, P. (2017). Education and Qualifications as Skills. In *The Oxford Handbook of Skills and Training*, ed. John Buchanan, David Finegold, Ken Mayhew, and Chris Warhurst, 143-160. Oxford: Oxford University Press.

Dawes, R. M., and Thaler, R. H. (1988). Anomalies: Cooperation. *Journal of Ecoomic Perspectives* 2 (3): 187-197.

Dominique, F. (2015). *Smart Specialisation: Opportunities and Challenges for Innovation Policy.* London: Routledge.

Helm, D. (2015). *Natural Capital: Valuing the Planet.* New Haven/London: Yale University Press.

McCann, P., and Ortega-Argiles, R. (2015). Smart Specialization, Regional Growth and Applications to European Union Cohesion Policy. *Regional Studies* 49 (8): 1291-1302.

OECD (2013). *Innovation-driven Growth in Regions: The Role of Smart Specialisation.* Paris: Organisation for Economic Cooperation and Development.

Olson, M. (1965). *The Logic of Collective Action: Public Goods and the Theory of Groups.* Cambridge: Cambridge University Press.

Samuelson, P. A. (1954). The Pure Theory of Public Expenditure. *Review of Economics and Statistics* 36 (4): 387-389.

Appendix 1: Expenditures on Economic Public Goods, Fiscal Year 2017²¹

County	Gen Govt	Public Safety	Corrections	Judiciary	Transportation and Public Works	Social Services	Housing	Natural Capital	Total Expenditure	(\$)	Rank
Bond	24.04%	22.89%	0.00%	9.23%	15.78%	25.72%	0.00%	0.02%	\$ 12,064,045	.00	32
Champaign	28.33%	7.28%	10.56%	10.02%	5.29%	26.32%	0.00%	0.03%	\$ 112,455,748	.00	30
Christian	16.88%	19.44%	4.96%	13.16%	28.07%	10.13%	0.00%	1.92%	\$ 13,923,105	.00	9
Coles	9.65%	4.16%	1.37%	1.76%	3.72%	2.74%	0.09%	0.06%	\$ 87,613,923	.00	27
Cook	10.58%	0.00%	8.72%	14.18%	1.27%	36.56%	0.00%	0.08%	\$ 5,782,446,750	.00	25
Crawford	20.91%	18.56%	7.45%	8.21%	23.39%	11.46%	0.00%	2.11%	\$ 11,417,140	.00	7
Dekalb	16.88%	10.45%	6.61%	8.10%	7.85%	23.26%	0.00%	0.96%	\$ 94,007,032	.00	13
Dewitt	38.93%	18.84%	2.55%	7.22%	18.49%	6.89%	0.00%	2.70%	\$ 11,120,524	.00	4
DuPage	16.63%	11.58%	2.22%	7.95%	8.59%	20.86%	1.51%	1.15%	\$ 476,102,757	.00	11
Edwards	36.75%	20.70%	0.00%	15.70%	18.38%	8.42%	0.00%	0.05%	\$ 2,827,119	.00	28
Effingham	36.30%	23.46%	0.00%	0.00%	15.43%	14.49%	0.00%	0.03%	\$ 18,063,691	.00	31
Franklin	41.38%	28.08%	0.00%	8.32%	14.03%	0.31%	0.00%	0.27%	\$ 18,504,550	.00	20
Fulton	34.68%	12.09%	3.65%	8.53%	10.62%	28.16%	0.00%	0.69%	\$ 26,933,473	.00	15
Iroquois	22.33%	15.77%	0.00%	8.44%	35.56%	6.35%	0.00%	0.16%	\$ 14,950,779	.00	23
Jackson	26.88%	13.68%	9.57%	12.32%	13.88%	21.44%	0.00%	0.45%	\$ 37,100,915	.00	18
Jasper	18.21%	22.58%	0.44%	7.16%	23.64%	17.85%	0.00%	2.36%	\$ 9,179,343	.00	5
Jo Davies	31.40%	24.60%	0.00%	8.87%	25.28%	9.07%	0.00%	0.00%	\$ 15,243,539	.00	34
Kane	27.54%	12.33%	9.04%	10.91%	9.25%	5.20%	1.93%	0.32%	\$ 224,705,652	.00	19
Kendell	19.08%	21.90%	7.72%	10.67%	15.59%	9.01%	0.00%	2.17%	\$ 62,033,727	.00	6
Knox	10.26%	14.31%	4.30%	8.14%	7.82%	43.64%	0.00%	7.41%	\$ 42,355,772	.00	2
Lake	16.17%	9.19%	5.77%	7.89%	3.74%	14.06%	0.00%	17.28%	\$ 569,751,293	.00	1
LaSalle	8.31%	1.48%	1.92%	2.44%	1.74%	4.08%	0.00%	0.03%	\$ 327,192,712	.00	29
Lawrence	16.40%	20.33%	0.00%	9.60%	21.29%	14.84%	0.00%	2.08%	\$ 7,205,452	.00	8
Logan	25.05%	25.50%	0.00%	13.58%	12.55%	16.61%	0.00%	0.58%	\$ 15,591,829	.00	17
Mclean	27.52%	11.95%	0.00%	16.66%	4.98%	15.95%	0.00%	1.10%	\$ 108,514,184	.00	12
Ogle	19.84%	18.19%	6.43%	14.44%	9.39%	7.54%	0.00%	1.44%	\$ 30,625,390	.00	10
Peoria	25.92%	13.49%	9.62%	11.28%	8.82%	18.84%	0.00%	0.21%	\$ 113,867,441	.00	21
Piatt	14.39%	11.95%	0.00%	3.65%	12.66%	54.45%	0.00%	0.15%	\$ 21,629,085	.00	24
Pulaski	11.37%	5.90%	43.65%	4.04%	6.05%	2.44%	0.00%	0.07%	\$ 15,337,782	.00	26
Rock Island	27.11%	8.46%	8.09%	8.90%	3.38%	30.36%	0.00%	5.45%	\$ 93,442,614	.00	3
Vermilion	6.51%	12.08%	1.00%	3.22%	3.56%	2.54%	0.00%	0.20%	\$ 120,850,876	.00	22
Washington	9.78%	3.72%	1.30%	1.32%	3.53%	3.66%	0.00%	0.02%	\$ 40,396,159	.00	33
Whiteside	19.13%	12.06%	5.13%	10.90%	10.64%	39.27%	0.00%	0.89%	\$ 31,993,971	.00	14
Will	16.10%	15.79%	8.42%	12.50%	4.09%	14.01%	0.00%	0.67%	\$ 410,289,845	.00	16

²¹ Only counties with spending on natural capital are shown. Data are from the Illinois Comptroller's Office.

CountyTotal. RevLocal Rev.State. RevFed. Rev.Rev23.Adams3237015891549591197373334022010901246Alexander2151796132221685319767190895611067070Bond12376166328667637660804423024881108Boone2943787913141798744121382018846667Brown12612617140038599958181216414Bureau18546573599247255010086699536383140Calhoun4279065126722717083382823081021192Carroll7703291324142525326861722521756928
Adams3237015891549591197373334022010901246Alexander2151796132221685319767190895611067070Bond12376166328667637660804423024881108Boone2943787913141798744121382018846667Brown12612617140038599958181216414Bureau18546573599247255010086699536383140Calhoun4279065126722717083382823081021192Carroll7703291324142525326861722521756928
Adams3237015891549591197373334022010901246Alexander2151796132221685319767190895611067070Bond12376166328667637660804423024881108Boone2943787913141798744121382018846667Brown12612617140038599958181216414Bureau18546573599247255010086699536383140Calhoun4279065126722717083382823081021192Carroll7703291324142525326861722521756928
Alexander2151796132221685319767190895611067070Bond12376166328667637660804423024881108Boone2943787913141798744121382018846667Brown12612617140038599958181216414Bureau18546573599247255010086699536383140Calhoun4279065126722717083382823081021192Carroll7703291324142525326861722521756928
Bond12376166328667637660804423024881108Boone2943787913141798744121382018846667Brown12612617140038599958181216414Bureau18546573599247255010086699536383140Calhoun4279065126722717083382823081021192Carroll7703291324142525326861722521756928
Boone2943/8/913141/98744121382018846667Brown12612617140038599958181216414Bureau18546573599247255010086699536383140Calhoun4279065126722717083382823081021192Carroll7703291324142525326861722521756928
Brown12612617140038599958181216414Bureau18546573599247255010086699536383140Calhoun4279065126722717083382823081021192Carroll7703291324142525326861722521756928
Bureau 18546573 5992472 5501008 669953 6383140 Calhoun 4279065 1267227 1708338 282308 1021192 Carroll 7703291 3241425 2532686 172252 1756928
Calhoun 4279065 1267227 1708338 282308 1021192 Carroll 7703291 3241425 2532686 172252 1756928
Carroll 7703291 3241425 2532686 172252 1756028
Cass 12479187 2650294 5484216 1898714 2445963
Champaign 110329306 37582591 25902841 13346933 33496941
Christian13830184390585861547731749613594592
Clark 12566152 3969209 4838388 723188 3035367
Clay 7697368 2682487 4024305 990576
Clinton 16497407 7027124 4658452 355987 4455844
Coles 86709229 8325958 5876545 942778 71563948
Cook 5928330505 2217264993 237033157 1046188907 2427843448
Crawford 11628763 4748428 4258326 202177 2419832
Cumberland 18473861 1352565 2098791 126847 14895658
Dekalb 74477531 23336312 9440709 3129059 38571451
Dewitt 11391459 4782574 3283980 3324905
Douglas 10111711 4277146 3433741 361390 2039434
DuPage 468637353 98502331 169469580 30749530 169915912
Edgar 39914705 4059997 5887773 347681 29619254
Edwards 2984493 1207693 1090223 686577
Effingham 17597866 4145626 9199567 732395 3520278
Fayette598901152197304356430351641753612091
Ford 8449019 3353769 3221724 1873526
Franklin 17238466 4285100 5824194 51523 7077649
Fulton 28140338 7975924 7960377 1269116 10934921
Gallatin 3095565 950565 1616566 17346 511088
Greene 6596277 2149621 1635987 600628 2210041
Grundy 37140789 17560520 6837119 817373 11925777
Hamilton 5334360 907144 2655013 56930 1715273
Hancock 13572087 3731216 4199219 532642 5109010
Hardin 0 0 0
Henderson 5107755 2102898 838167 105532 2061158
Henry 34190317 8580745 8007232 592997 17009343
Iroquois 16364562 4987597 7832266 3544699
Jackson 36404077 12306184 8656264 1733378 13708251
Jasper 10114733 3906324 3931917 314831 1961661
Jefferson 18277285 6436402 6828893 248380 4763610

Appendix 2: Sources of Revenue, 2017²²

 ²² Data are from the Illinois Comptroller's office. Units = \$.
²³ Includes licenses and permits, fines, charges for services, and interests (see Local Government Warehouse, Illinois Comptroller's Office)

Jersey	11302870	4001721	3268488	218716	3813945
Jo Davies	15023323	7433197	4864193	369326	2356607
Johnson	7754913	2520866	3576338		1657709
Kane	235600210	92478616	71587155	9858819	61675620
Kankakee	63758616	20042349	12294177	8298842	23123248
Kendell	60605473	26160759	22419388	2711526	9313800
Knox	42814898	10385056	8368126	2050673	22011043
Lake	524190645	215259124	83563141	55848248	169520132
LaSalle	328321451	29257251	13869866	1907346	283286988
Lawrence	7803399	1960339	2812694	128572	2901794
Lee	20979739	7284056	6402931		7292752
Livingston	26132398	8165994	7567345	625626	9773433
Logan	14488622	4528792	4481062	1024574	4454194
Macon	66724241	23173287	21227445	1040548	21282961
Macoupin	20433754	4427373	5743355	3009952	7253074
Madison	20100101	0	0	0000002	0
Marion		0	0		0
Marshall	6784511	2763866	2446811	85996	1487838
Mason	10677961	3463572	3586806	292078	3335505
Massac	23663853	17359623	2628541	23073	3652616
McDonough	22854415	5805937	4636769	596848	11814861
McHenry	215449769	101307333	40637843	10736104	62768489
Mclean	98737568	35055966	24846077	3776701	35058824
Menard	14508310	3433287	2046631	0110101	9028392
Mercer	11398094	3967334	3361361	11968	4057431
Monroe	101338206	79786543	4096320	11000	17455343
Montgomery	15736799	6032345	3110857	740496	5853101
Morgan	68546641	5721630	7645275	21331	55158405
Moultrie	8811228	3239386	3925876	87718	1558248
Oale	31663444	13027595	7395095	507578	10733176
Peoria	112887106	38241369	26930378	1317847	46397512
Perry	12011161	3648882	4245281	557061	3559937
Piatt	19774998	4031320	4574820	126397	11042461
Pike	44855163	3612022	2664066	1718230	36860845
Pone	3282688	819539	1640002	450000	373147
Pulaski	13089343	1503525	1376171	100000	10209647
Putnam	4223138	1614294	1761933	86391	760520
Randolph	17700641	4243081	11005741	318879	2132940
Richland	7069098	2328478	3181073	010010	1559547
Rock Island	94006628	36123892	11743714	9613470	36525552
Saline	12692756	3439769	3214289	600	6038098
Sangamon	89577899	30181326	25137895	11540835	22717843
Schuvler	5081601	1584726	1202862	54801	2239212
Scott	13274005	1124529	971797	04001	11177679
Shelby	14143849	4441272	6960718	852804	1889055
Stark	3513787	1316287	1600667	38/7	1000000
St Claire	1510/3/10	38012862	2008112/	261/0315	57800107
Stenhenson	3/017275	10823228	522/026	20143313	17060171
Татомеш	54017520	20252016	15627557	2305231	16/20224
Inion	110070/4	20002010	13027337	16650	10400234
	11927241	2220331	4400U4 I	10028	4193044

MEDIAN PROPORTION		0.32	0.29	0.02	0.32
Woodford	17664414	5339494	7505346	482236	4337338
Winnebago	181176196	68652254	36876233	10786385	64861324
Williamson	43988565	18960665	12804087	1461222	10762591
Will	363121959	160930841	72945229	20801083	108444806
Whiteside	32630409	10593164	7284081	3373451	11379713
White	8873419	1829341	3678801	140871	3224406
Wayne	9002202	2528978	4847983		1625241
Washington	47347661	36896673	2136547	157098	8157343
Warren	8457892	3015579	2630409	592987	2218917
Wabash	12133969	6668897	1657617	354584	3452871
Vermilion	127790116	14934922	15718441	752118	96384635